Методы защиты от ультразвука. Защита от ультразвука и инфразвука

Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов индивидуальной и коллективной защиты, строительно-акустическими методами. Средства коллективной зашиты делятся по отношению к источнику шума на снижающие шум в источнике возникновения (наиболее эффективно) и снижающие шум на путях его распространения. По способу реализации различают следующие методы зашиты:

  • акустические - основаны на акустическом расчете помещения и подборе по принципу действия средств звукоизоляции, звукопоглощения, виброизоляции, демпфирования, глушителей шума;
  • строительно-акустические экраны, звукоизоляция, кабины наблюдения, дистанционное управление, кожухи, уплотнения и т.д. Наиболее эффективны такие звукоизолирующие материалы, как трипласт (композиционный материал) и пластобетоны с наполнителями из хлопка, опилок древесины, соломы и т.д. Звукопоглощающими материалами являются также мрамор, бетон, гранит, кирпич, ДВП, ДСП. войлок, минераловата, материалы со щелевой перфорацией;
  • архитектурно-планировочные - рациональное размещение рабочих мест; рациональный режим труда и отдыха.

Инфразвук - колебания с частотой звуковой волны менее 25 Гц. Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям и для его описания используется такой же математический аппарат, как и для слышимого звука (кроме понятия, связанного с уровнем звука).

Инфразвук мало поглощается средой, поэтому распространяется на значительные расстояния.

Источником инфразвука является оборудование, которое работает с частотой циклов менее 20 в секунду.

Инфразвук вредно воздействует на центральную нервную систему и может вызывать страх, тревогу, чувство покачивания и т.д.

Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6-8 Гц), следовательно, из-за резонанса могут возникнуть тяжелые последствия. Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечного ритма. Возможна потеря слуха и зрения.

Защитные мероприятия:

  • 1) снижение инфразвука в источнике возникновения;
  • 2) применение средств индивидуальной зашиты;
  • 3) использование устройств, поглощающих инфразвук.

Приборы контроля - шумомеры типа ШВК с фильтром ФЭ-2; ви-

броаккустическая аппаратура типа RFT.

Ультразвук - колебание звуковой волны с частотой более 20 кГц (за пределами слышимости). Низкочастотные ультразвуковые колебания распространяются воздушным и контактным путем; высокочастотные - контактным путем. Ультразвук оказывает вредное воздействие на сердечно-сосудистую, нервную и эндокринную системы; нарушает терморегуляцию и обмен веществ. Местное воздействие может привести к онемению.

Защитные мероприятия:

  • 1) использование блокировок;
  • 2) звукоизоляция(экранирование);
  • 3) использование дистанционного управления;
  • 4) применение противошумов.

В качестве приборов контроля используют виброакустическую систему типа RFT.

Ультразвук как упругие волны не отличается по свойствам от слышимого звука, однако частота колебательного процесса способствует большему затуханию колебаний вследствие трансформации энергии в теплоту.

По частотному спектру ультразвук подразделяют на низкочастотный и высокочастотный; по способу распространения - на воздушный и контактный ультразвук.

Низкочастотные ультразвуковые колебания хорошо распространяются в воздухе. Биологический эффект воздействия их на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, подвергаемого действию ультразвука. Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечнососудистой и эндокринной систем, слухового и вестибулярного анализаторов.

У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга, чувство страха в темноте, в ограниченном пространстве, резкие приступы с учащением пульса, чрезмерной потливостью, спазмы в желудке, кишечнике, желчном пузыре. Наиболее характерны жалобы на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, бессонницу.

Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т.е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Профессиональные заболевания зарегистрированы лишь при контактной передаче ультразвука на руки.

Следует отметить, что производственный шум и вибрация оказывают более агрессивное действие, чем ультразвук сопоставимых параметров.

На людей и животных может воздействовать ударная волна. Прямое воздействие возникает в результате избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека ударная волна мгновенно охватывает человека и подвергает его сильному сжатию в течение нескольких секунд.

Мгновенное повышение давления воспринимается живым организмом как резкий удар. Скоростной напор при этом создает значительное лобовое давление, которое может привести к перемещению тела в пространстве. Косвенные поражения людей и животных могут произойти в результате ударов осколков стекла, шлака, камней, дерева и других предметов, летящих с большой скоростью.

Степень воздействия ударной волны зависит от мощности взрыва, расстояния, метеоусловий, местонахождения (в здании, на открытой местности) и положения человека (лежа, сидя, стоя). Характеризуется легкими, средними, тяжелыми и крайне тяжелыми травмами.

Ультразвук – это упругие волны с частотой колебаний от 20 кГц и до 1 ГГц, которые не слышимы человеческим ухом. Источниками ультразвука являются все виды ультразвукового технологического оборудования; ультразвуковые приборы и аппаратура промышленного, медицинского и бытового назначения, которые генерируют ультразвуковые колебания в диапазоне от 18 кГц до 100 МГц и выше.

Различают следующие виды ультразвука:

  • низкочастотные (до 100 кГц) ультразвуковые колебания, которые распространяются контактным и воздушным путем;
  • высокочастотные (100 кГц-100 МГц и выше) ультразвуковые колебания, которые распространяются исключительно контактным путем.

Неблагоприятному воздействию ультразвука подвергаются дефектоскописты, операторы очистных, сварочных, ограночных агрегатов, медицинский персонал физиокабинетов и отделений, работники учреждений здравоохранения, проводящие ультразвуковые исследования и др. Установлено, что работающие с технологическими и медицинскими ультразвуковыми источниками подвергаются воздействию ультразвука с частотой колебаний 18 кГц-20 МГц и интенсивностью 50-160 дБ.

Воздействие ультразвука на организм человека

Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется интенсивно­стью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

При систематическом воздействии интенсивного низкочастотного ультразвука, если его уровень превышает предельно допустимый, у работников могут наблюдаться функциональные изменения центральной и периферической нервной системы, сер­дечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов, гуморальные нарушения. Данные о действии высокочастотного ультразвука на организм человека свидетельствуют о поли­морфных изменениях почти во всех тканях, органах и и системах. Происходящие под воздействием ультразвука (воздушного и контактного) изменения подчиняются общей закономерности: малые интенсивности стимулируют, активируют. Средние и большие – угнетают, тормозят и могут полностью подавлять функции. С 1989 года вегето-сенсорная полиневропатия рук (ангионевроз), развивающаяся у работников при воздействии контактного ультразвука, признана профессиональным заболеванием и внесена в список профзаболеваний.

Профилактика неблагоприятного воздействия ультразвука

Гигиеническое нормирование воздушного и контактного ультра­звука направлено на оптимизацию и оздоровление условий труда работ­ников, занятых выполнением трудовых функций с технологическими и медицинскими ультразвуковыми источниками. Санитарные правила и нормы СанПиН 2.2.4/2.1.8.582-96 «Гигиенические требования при работах с источниками воздушного и контактного ультразвука про­мышленного, медицинского и бытового назначения» устанавливают гигиеническую классификацию ультразвука, воздействующего на чело­века – оператора, нормируемые параметры и предельно допустимые уровни ультразвука для работающих и населения, требования к контролю воздушного и контактного ультразвука, а также меры профилактики.

При совместном воздействии контактного и воздушного ультра­звука следует применять понижающую поправку (5 дБ) к предельно допустимому уровню контактного ультразвука, облачающего более вы­сокой биологической активностью. Уровни воздушного и контактного ультразвука от источников бытового назначения (стиральные машины, устройства для отпугивания насекомых, грызунов, собак, охранная сигнализация и пр.), которые работают на частотах ниже 100 кГц, не должны превышать 75 дБ на рабочей частоте.

И целях профилактики неблагоприятного воздействия на работни­ков ультразвука следует также руководствоваться ГОСТ 12.4.077-79 «ССБТ. Ультразвук. Методы измерения звукового давления на рабочих местах», ГОСТ 12.2.051-80 «ССБТ. Оборудование технологическое ультразвуковое. Требования безопасности», ГОСТ 12.1.001-89 «ССБТ. Ультразвук. Общие требования безопасности» и другими нормативно-методическими документами.

Защита от неблагоприятного воздействия ультразвука

Защита работников от неблагоприятного воздействия ультразвука достигается путем:

  • проведения предварительных и периодических медосмотров;
  • физиопрофилактических процедур (тепловые воздушные с микромассажем и тепловые гидропроцедуры для рук, массаж верхних конечностей и др.),
  • рефлексопрофилактики;
  • гимнастических упражнений;
  • психофизической разгрузки;
  • витаминизации, сбалансированного питания;
  • организации рационального режима труда и отдыха и др.

Защита от инфразвука

Инфразвук – это акустические колебания с частотой ниже 20 Гц, которые находятся в частотном диапазоне ниже порога слышимости. Производственный инфразвук возникает в тех процессах, что и шум слышимых частот.

В настоящее время максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ. К объектам, на которых инфразвуковая область акустического спектра преобладает над звуковой, относятся автомобильный и водный транспорт, конвертерные и мартеновские цехи металлургических производств, компрессорные газоперекачивающих станций, портовые краны и др.

Особенности инфразвука

Инфразвук как физическое явление подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды:

  1. Имеет во много раз большие амплитуды колебаний, чем акустические волны при равных мощностях источников звука;
  2. Распространяется на большие расстояния от источника генерирования ввиду слабого поглощения его атмосферой.

Большая длина волны делает характерным для инфразвука явление дифракции (от лат. diffraclus - разломанный) – огибание волнами различных препятствий, если размеры препятствия около длины волны или больше. Инфразвук проникает в помещения и обходит преграды, задерживающие слышимые звуки. Инфразвуковые колебания способны вызвать вибрацию крупных объектов вследствие явлений резонанса. Указанные особенности инфразвука затрудняют борьбу с ним.

Воздействуя на организм человека, инфразвук вызывает неприятные субъективные ощущения и многочисленные реактивные измене­ния, к числу которых относятся астенизация, изменения в центральной нервной, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе.

Действующими санитарными правилами и нормами СанПиН 2.2.4/2.1.8.583-96 «Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки» установлены предельно допустимые уровни инфразвука на рабочих местах с учетом тяжести и напряженности выполняемой работы:

  • для работ различной степени тяжести в производственных помещениях и на территории организаций предельно допустимые уровни инфразвука составляют 100 дБ Лин;
  • для работ различной степени интеллектуально-эмоциональной напряженности – 95 дБ Лин;
  • для колеблющегося во времени и прерывистого инфразвука уровни звукового давления не должны превышать 120 дБ Лин.

Основные методы и средства защиты от инфразвука

Основными методами и средствами защиты от инфразвука являются:

  • изменение режима работы технологического оборудования – увеличение его быстроходности с тем, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона;
  • снижение интенсивности аэродинамических процессов: огра­ничение скоростей движения транспорта, снижение скоростей истечения жидкостей;
  • глушители интерференционного типа;
  • рациональный режим труда и отдыха;
  • использование средств индивидуальной защиты (противошумы, специальные пояса и др.).

В принципе, для защиты от инфра- и ультразвука применимы методы для защиты от шума, изложенные выше.

Для защиты от низких инфразвуковых частот звукоизоляция крайне неэффективна - требуются очень толстые и массивные звукоизолирующие перегородки. Также неэффективны звукопоглощение и акустическая обработка помещений. Поэтому основным методом борьбы с инфразвуком является борьба в источнике его возникновения.

Другими мероприятиями по борьбе с инфразвуком являются:

  • * повышение быстроходности машин, что обеспечивает перевод максимума излучения в область слышимых частот, где становятся эффективными звукоизоляция и звукопоглощение;
  • * устранение низкочастотных вибраций;
  • * применение глушителей реактивного типа.

Ультразвук из-за очень высоких частот быстро поглощается в воздухе и материалах конструкций, поэтому он распространяется на небольшие расстояния. Для защиты от ультразвука очень эффективной является звукоизоляция и звукопоглощение. Обычно источники ультразвука заключают в кожухи из тонкой стали, алюминия (толщиной 1 мм), обклеенные внутри резиной. Применяют также эластичные кожухи из нескольких слоев резины общей толщиной 3,5 мм. Эффективность таких кожухов может достигать 60...80 дБ. Применяют также экраны, расположенные между источником и работающими.

Экранирование излучений. Экранируют либо источники излучения, либо зоны, где может находиться человек. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов. Экраны частично отражают и частично поглощают электромагнитную энергию. По степени отражения и поглощения их условно разделяют на отражающие и поглощающие экраны.

Отражающие экраны выполняют из хорошо проводящих материалов, например стали, меди, алюминия толщиной не менее 0,5 мм из конструктивных и прочностных соображений. Кроме сплошных, перфорированных, сетчатых и сотовых экранов могут применяться: фольга, наклеиваемая на несущее основание; токопроводящие краски (для повышения проводимости красок в них добавляют порошки коллоидного серебра, графита, сажи, окислов металлов, меди, алюминия), которыми окрашивают экранирующие поверхности; экраны с металлизированной со стороны падающей электромагнитной волны поверхностью.

Поглощающие экраны выполняют из радиопоглощающих материалов. Есественных материалов с хорошей радиопоглощающей способностью нет, поэтому их выполняют с помощью различных конструктивных приемов и введением различных поглощающих добавок в основу. В качестве основы используют каучук, поролон, пенополистирол, пенопласт, керамикометаллические композиции и т.д. В качестве добавок применяют сажу, активированный уголь, порошок карбонильного железа и пр. Все экраны обязательно должны заземляться для обеспечения стекания образующихся на них зарядов в землю.

Для увеличения поглощающей способности экрана их делают многослойными и большой толщины, иногда со стороны падающей волны выполняют конусообразные выступы.

Наиболее часто в технике защиты от электромагнитных полей применяют металлические сетки. Они легки, прозрачны, поэтому обеспечивают возможность наблюдения за технологическим процессом и излучателем, пропускают воздух, обеспечивая охлаждение оборудования за счет естественной или искусственной вентиляции.

Расчет эффективности экранирования довольно сложен. Поэтому на практике при выборе типов экранов и оценки их эффективности используют имеющийся богатый экспериментальный материал, представленный в справочниках в виде таблиц, расчетно-экспериментальных кривых, номограмм.

При расположении излучателей в помещениях электромагнитные волны могут отражаться от стен и перекрытий. В результате в помещении могут создаваться зоны с повышенной плотностью энергии излучения. Поэтому стены и перекрытия таких помещений необходимо выполнять с плохо отражающей поверхностью. Окрашивать стены и потолки нужно известковой и меловой краской. Нельзя использовать масляную краску (она отражает до 30 % электромагнитной энергии), облицовывать стены кафелем. Поверхности помещения, в которых находятся излучатели повышенных мощностей, облицовывают радиопоглощающим материалом.

В зависимости от технологического процесса излучающие установки целесообразно размещать в отделенных от других участков помещениях, имеющих непосредственный выход в коридор и наружу.

Для этих целей подходят угловые помещения первого и последнего этажей здания.

Источники излучения должны иметь санитарный паспорт, перед их строительством или установкой проводится расчетный радиопрогноз и осуществляется его экспериментальная проверка. При выполнении радиопрогноза необходимо учитывать возможность переизлучения от отражающих объектов на местности - железобетонных зданий и сооружений, металлических ограждений, конструкций и т.д.

Средства индивидуальной защиты. К СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащитные костюмы, комбинезоны, фартуки, очки, маски и т.д. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микропроводом, выполняющим роль сетчатого экрана. Шлем и бахилы костюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания.

Эффективность костюма может достигать 25...30 дБ. Для зашиты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность очков оценивается в 25...35 дБ.

Магнитостатическое экранирование заключается в замыкании магнитного поля в толще экрана, происходящим из-за его повышенной магнитопроводимости. Поэтому магнитостатический экран должен обладать большой магнитной проницаемостью. Такие экраны изготовляют из стали, железа, никелевых сплавов (пермолоя). Для получения надежного экранирования стенки экрана приходится делать сравнительно толстыми, чтобы уменьшить сопротивление магнитному потоку. В ряде случаев экраны делают из нескольких слоев, и они получаются громоздкими. Щели и прорези в экране не должны идти поперек ожидаемого направления линий магнитной индукции, т. к. это уменьшает магнитопроводимость и ухудшает экранирующие свойства экрана.

ЭС- и МС-экраны эффективны также в области низких частот ЭМП.

Общая характеристика ультразвука

В соответствии с ГОСТ 12.1.00-89 под ультразвуком понимаются упругие колебания, распространяющиеся в газообразных, жидких и твердых средах в диапазоне частот от 1,12*10 4 Гц до 10 9 Гц. Практически это не слышимые звуки, занимающие достаточно широкий диапазон частот. УЗ находит широкое применение в различных технологических процессах: обработке любых материалов, резке, сварке, очистке и др. УЗ наряду с лазером называют инструментом ХХ и соответственно ХХ1века.

ГОСТ 12.1.00-89 устанавливает классификацию, основные параметры, допустимый уровень ультразвука на рабочих местах, требования к ультразвуковым характеристикам оборудования, методам контроля и защиты от воздействия ультразвука.

Методы и средства защиты от ультразвука Коллективные методы защиты от шума .

Основной мерой защиты от ультразвука является уменьшение его интенсивности в источнике его возникновения.

Это осуществляется различными конструкционными мероприятиями (точность изготовления деталей, смазка) и переводом генератора на более высокие частоты, для которых допустимые уровни выше.

Коллективные меры защиты применяются для защиты от ультразвука по пути его распространения.

Для защиты от воздушного ультразвука, как и при шуме, применяют звукоизоляцию и звукопоглощение, но только в узком частотном диапазоне.

Звукоизоляция обеспечивается герметичными кожухами из листовой стали или алюминия, толщиной 1-2 мм или из стеклотекстолита, гетинакса толщиной более 5 мм. Внутренние стенки кожуха покрываются слоем пористой резины, при этом суммарный уровень поглощения ультразвукового излучения кожухом снижается на 25-30 дБ.

Необходимо устройство экранов, также как и при шуме, с-образной и п-образной формы между работающим оборудованием и персоналом. Чаще всего экраны изготавливают из прозрачных материалов, в частности, из оргстекла.

Существенно снижает интенсивность ультразвука размещение ультразвуковых установок в звукоизолирующих кабинах или в специальных помещениях.

При контактном действии ультразвука защита обеспечивается средствами виброизоляции, вибропоглощения (т.е. различными типами амортизаторов, покрытий, резиновыми перчатками и резиновыми ковриками).

Для исключения контакта работающих с источниками ультразвука применяется дистанционное управление оборудованием, автоблокировка (автоматическое отключение оборудования при загрузке-выгрузке деталей в случае очистки или нанесения покрытия), специальные приспособления для удержания деталей. Для защиты рук от возможного неблагоприятного воздействия контактного ультразвука применяют две пары перчаток: резиновые - наружные и хлопчатобумажные - внутренние.

Ультразвуковые станки для сварки, резки и пайки, содержащие ультразвуковые преобразователи с концентраторами, обязательно должны иметь экраны из оргстекла достаточно толстого, или другого материала, обеспечивающего снижение уровней ультразвукового давления до допустимого. Если по производственным причинам невозможно снизить интенсивность ультразвука до допустимых значений применяют средства индивидуальной защиты (СИЗ).

В качестве СИЗ от вредного воздействия ультразвука, распространяющегося в воздушной среде применяют ушные вкладыши и противошумные наушники, рассчитанные на более высокие частоты.

Медико-профилактические мероприятия при защите от ультразвука на рабочих местах.

Медико-профилактические мероприятия включают в себя предварительные и периодические медосмотры. На работу с ультразвуковыми установками принимаются лица, не моложе 18 лет и не имеющие заболеваний органов слуха (также, как и при шуме).

Периодичность медосмотров: при уровне ультразвука 80-99 дБ - 1 раз в 2 года; если уровень более 100 дБ - 1 раз в год.

Режим труда и отдыха при работе с ультразвуковым оборудованием следующий: работа 50% рабочего времени и через каждые 1,5 часа перерыв 15 мин.

Комплекс физиотерапевтических процедур, включает в себя массаж, ультрафиолетовое облучение, в особенности для рук. Зона с параметрами ультразвука, превышающими предельно-допустимые обозначается знаком "Осторожно. Прочие опасности".

Общие сведения об инфразвуке.

В соответствии с санитарными нормами СН 2.2.4/2.1.8. 567-96 «Санитарные нормы. Гигиенические нормативы инфразвука на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки» под инфразвуком понимают колебания упругих сред воздуха, твердых тел и жидкостей в диапазоне частот от 10 -2 до 20 Гц.

Инфразвуковых колебаний в природе гораздо больше, чем слышимых. Вся окружающая нас природная среда является источником инфразвука. Все живое движется, и под действием этого движения создаются инфразвуковые колебания разной частоты и интенсивности. Биение сердца, колебания легких, вибрация голосовых связок, любое наше движение рождает инфразвук.

Защита от инфразвука на производстве.

От инфразвука защиты по пути распространения практически нет.

Снижения ИЗ можно добиться только в источнике его возникновения. Для этого проводятся конструктивные изменения, позволяющие перейти из области ИЗ колебаний, в более высокочастотные, т.е. выше 20 Гц.

Кроме того, необходимо повышать жесткость конструкции больших размеров, устранять низкочастотные вибрации.

Таким образом, для защиты от инфразвука используются:

  • 1. Ослабление инфразвука в его источнике, устранение причин, порождающих низкочастотные колебания;
  • 2. Повышение жесткости конструкций больших размеров;
  • 3. Разработка конструкций, поглощающих инфразвуковые колебания, в том числе создание глушителей инфразвука;
  • 4. Создание средств индивидуальной защиты;
  • 5. Медицинские профилактические мероприятия.

Возможно некоторое снижение инфразвука при создании многослойных изолирующих кабин, состоящих из нескольких слоев алюминиевых или магниевых сплавов, между которыми располагаются пористые материалы (например, эластичный пенополиуретан). На наружные поверхности таких кабин наносится несколько слоев мастики типа антивибрит.

В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума.

Медицинские и профилактические мероприятия по защите от инфразвука аналогичны мероприятиям, проводимым при защите от шума, и требуют прежде всего соблюдения режима труда и отдыха, запрещения сверхурочных работ.

Предупреждение неблагоприятного действия ультразвука и сопровождающего его шума на организм работающих прежде всего должно сводиться к сокращению до минимума интенсивности ультразвуковых излучений и времени действия. Поэтому при выборе источника ультразвука для проведения той или иной технологической операции не следует использовать мощности, превышающие потребные для их выполнения; включать их надо лишь на тот период времени, который требуется для выполнения данной операции.
Установки ультразвука и отдельные их узлы (генераторы токов высокой частоты, магнитострикционные преобразователи, ванны) должны максимально звукоизолироваться путем заключения их в укрытия, изоляции в отдельные кабины или помещения, покрытия звукоизоляционным материалом и т. д. При невозможности полной звукоизоляции используется частичная изоляция, а также

звукопоглощающие экраны и покрытия. Ввиду особой опасности контактного облучения ультразвуком технологический процесс ультразвуковой обработки должен полностью исключать возможность такого воздействия или, по крайней мере, сократить его до минимума.

Ванны для ультразвуковой обработки со всех наружных поверхностей следует покрывать звукоизоляционным слоем и во время работы закрывать их крышками также со звукоизоляцией. При открывании ванн для загрузки, выгрузки или изменения положения обрабатываемых деталей необходимо выключать ультразвуковую установку. Открывание крышки ванны целесообразно сблокировать с отключением установки. При невозможности полного отключения ультразвуковых установок загрузку деталей в ванну производить в специальной металлической сетке или корзине, причем ручки этой корзины не должны соприкасаться со стенками ванны и тем более с жидкостью. Для изменения положения обрабатываемых изделий сетка (корзина)

вынимается из ванны.

Установка, повороты и снятие деталей в станках для контактной ультразвуковой обработки также производятся при выключенном состоянии. Если выключить установку нельзя, эти операции производятся специальными щипцами. В качестве отражательных экранов для предупреждения распространения ультразвуковых колебаний используют металлические и пластмассовые щиты.
Наиболее распространенными средствами индивидуальной защиты при работе с ультразвуком являются противошумы и перчатки. Последние целесообразно иметь двухслойные: снаружи резиновые, а изнутри хлопчатобумажные или шерстяные, они лучше поглощают колебания и непромокаемы.
При выявлении начальных признаков неблагоприятного воздействия ультразвука на организм работающих нужно временно прекратить работу в контакте с ультразвуком (очередной отпуск, перевод на другую работу), что приводит к быстрому исчезновению симптомов воздействия.
Все вновь поступающие на работу с ультразвуком подлежат обязательному предварительному медицинскому обследованию, а в дальнейшем - периодическим медицинским осмотрам не реже одного раза в год.

Воздействие на человека электромагнитных

Полей и излучений.

Электромагнитные поля (ЭМП) в окружающей среде создают линии электропередач, электрооборудование, электроприборы – все технические системы, генерирующие, передающие и использующие электромагнитную энергию.

Действие на организм человека ЭМП определяется частотой излучения, его интенсивностью, продолжительностью, индивидуальными особенностями организма.

Длительное воздействие на человека ЭМП промышленной частоты (50 Гц) вызывает головные боли, вялость, снижение памяти, расстройство сна, повышенную раздражительность, боли в сердце и т.д.

Необходимо ограничить время пребывания в зоне действия.

Электромагнитные излучения .

Большую часть спектра неионизирующих ЭМИ составляют радиоволны, меньшую часть – колебания оптического диапазона: инфракрасное излучение (ИК), видимое, ультрафиолетовое излучение (УФ).

ЭМИ радиочастот широко используются в связи, телерадиовещании, в медицине, радиолокации, дефектоскопии и т.д.

Воздействие ЭМИ радиочастот на организм определяется плотностью потока энергии, частотой излучения, продолжительностью воздействия, размером облучаемой поверхности, индивидуальными особенностями организма и т.д.

Следствием поглощения энергии ЭМИ организмом человека является повышение температуры органов. Воздействие ЭМИ особенно вредно для глаз и кожи.Например, облучение глаз может привести к помутнению хрусталика (катаракте), возможны ожоги роговицы.

При длительном действии ЭМИ (выше ПДУ) возможны расстройства в ЦНС, изменение обмена веществ, состава крови, может наблюдаться выпадение волос, ломкость ногтей, снижение веса. В случае аварийных ситуаций воздействие ЭМИ сопровождается сердечно-сосудистыми расстройствами с обмороками, учащением пульса и снижением артериального давления.

Воздействие ЭМИ оптического диапазона: инфракрасного, видимого (светового), ультрафиолетового излучений на человека принципиального различия не имеют. Энергии вызывают тепловой эффект наиболее поражаемого органа – кожи и глаз.

При остром повреждении кожи возможны ожоги, поражение глаз.

При воздействии инфракрасного излучения (при хроническом облучении) происходит резкое расширение капилляров, усиление пигментации кожи – красный цвет лица у рабочих: стеклодувов, сталеваров и др.

Видимое (световое) излучение ядерного взрыва, например, приводит к ожогам открытых участков кожи, временному ослеплению.

УФ излучение является жизненно необходимым фактором, оказывающим благотворное стимулирующее влияние на организм. Оптимальные дозы УФИ активизируют деятельность сердца, обмен веществ. Наиболее уязвим для УФИ – глаз. Воздействие на кожу- воспаление с покраснением, пузыри, повышение температуры, озноб, головная боль. УФИ составляет примерно 5% плотности потока солнечного излучения. Однако загрязнение атмосферы понижает ее прозрачность для УФИ.

УФИ искусственных источников (например, электросварочных дуг) может стать причиной острых и хронических проф. поражений.

Лазерное излучение (ЛИ) – особый вид ЭМИ. Отличие ЛИ от других видов ЭМИ заключается в монохроматичности (волны строго одной длины) и острой направленности луча.

Различают прямое лазерное излучение, рассеянное, зеркально отраженное.

Степень воздействия ЛИ на организм зависит от интенсивности излучения, времени воздействия. При облучении глаз легко повреждается роговица и хрусталик (нагрев хрусталика – к образованию катаракты). Повреждение кожи может быть различным: от покраснения до обугливания.

По степени опасности излучения лазеры подразделяются на полностью безопасные и опасные. Лазеры применяются в системах связи, в технологии обработки металлов, в медицине, в контрольно-измерительной технике, в военной технике и др. областях.


Похожая информация.